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Abstract. We have investigated the eigenenergy spectrum of the two-photon Jaynes-Cummings (JC) model
with and without the rotating-wave approximation (RWA). Our analysis has indicated that the counter-
rotating term dramatically changes the nature of the RWA energy spectrum and that the non-RWA spec-
trum can be approximated by the RWA spectrum only in the range of a sufficiently small coupling constant.
Furthermore, unlike the one-photon counterpart, the two-photon JC model without the RWA is well de-
fined only if the coupling parameter is below a certain critical value. As a result, the dynamics of the
two-photon JC model without the RWA is significantly different from its RWA counterpart. For instance,
the counter-rotating term can dramatically enhance the field squeezing effect. Besides, we would expect
that the quantum dynamics of the two-photon JC model without the RWA is qualitatively different from
that of the usual one-photon case.

PACS. 42.50.Vk Mechanical effects of light on atoms, molecules, electrons, and ions – 32.90.+a Other
topics in atomic properties and interactions of atoms and ions with photons (restricted to new topics in
section 32)

1 Introduction

The interaction between radiation and matter is a central
problem in quantum optics. The simplest physical situa-
tion can be successfully described by a rather simplified
but non-trivial model proposed by Jaynes and Cummings
more than three decades ago [1], which idealizes the real
situation by concentrating on the near-resonance linear
coupling between a single two-level atomic system and a
quantized radiation mode (~ = 1):

H = ω0Sz + ωa†a+ ε
(
a†S− + aS+

)
, (1)

where the radiation mode of frequency ω is described by
the bosonic operators a and a†, the two atomic levels sep-
arated by an energy difference ω0 are represented by the
spin-half operators Sz and S±, and the atom-field cou-
pling strength is measured by the positive parameter ε.
Despite its simplicity, the Jaynes-Cummings (JC) model is
of great significance because recent technological advances
have enabled us to experimentally realize this rather ide-
alized model [2–5] and to verify some of the theoretical
predictions. Stimulated by the success of the JC model,
more and more people have paid special attention to ex-
tending and generalizing the model in order to explore
new quantum effects [6]. One possible generalization is
the two-photon JC model:

H = ω0Sz + ωa†a+ ε
(
a†2S− + a2S+

)
. (2)

Such a generalization is of considerable interest because
of its relevance to the study of the coupling between a
single atom and the radiation field with the atom making
two-photon transitions [7–10]. It is noted that the quan-
tum dynamics of the two-photon JC model is qualitatively
different from that of the usual single-photon JC model.
Recent advances in the two-photon micromaser have also
made such investigations not for purely theoretical inter-
ests only, and have stimulated more and more attention
to this subject [11–13].

As in the original JC model, the two-photon JC model
is analytically solvable due to the neglect of the so-called
counter-rotating terms : ε

(
a†2S+ + a2S−

)
. Strict analysis

of the validity of this rotating-wave approximation (RWA)
is, however, not usually considered in concrete applica-
tions, and the range of the system parameters where the
results are meaningful remains uncertain. Therefore, it is
of great interest to analyse the exact solutions of the more
complete models that contain the counter-rotating terms
for a wide range of the system parameters, and compare
them with the RWA results. Such studies are useful for de-
termining the limits of validity of the RWA. For instance,
in a recent study of the one-photon JC model beyond the
RWA, it has been shown that the eigenenergy spectrum
of the system can be approximated by the RWA results
only in the range of a sufficiently small coupling constant,
and that the width of this range decreases as one goes
to the highly excited states [14]. Furthermore, Ford and
O’Connell recently pointed out that although the RWA is
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an integral part of the foundations of quantum optics, yet
it can have a very serious defect, viz. the RWA spectrum
has no lower bound for all models of physical interest [15].
In other words, the RWA model is ill-defined. Besides, in
our recent study of the k-photon JC model without the
RWA, we also observed that the model is in fact unde-
fined for k > 2 and qualitatively different from the RWA
counterpart [16]. In this paper we would like to investigate
the effects of the counter-rotating term in the two-photon
JC model as well. In order to solve the two-photon JC
model in which the counter-rotating term is included, we
need to resort to the numerical diagonalization method
because analytical solutions are not available. Neverthe-
less, the presence of some unitary transformation which
decouples the spin degree of freedom from the bosonic
one and the SU(1, 1) Lie symmetry of the system helps
bring the Hamiltonian into block-diagonal form, and thus
the numerical calculations are considerably simplified, as
shown in the following section. The scheme of this paper
is as follows. In section 2 we shall describe how to obtain
the eigenenergy spectrum of the two-photon JC Hamilto-
nian with and without the counter-rotating term. Finally,
in the last section the numerical results are discussed and
a brief conclusion is presented.

2 Two-photon JC model with and without
RWA

To begin with, let us introduce the operators K+, K−
and K0:

K+ =
1
2
a†2, K− = K†+ =

1
2
a2, K0 =

1
4
(
2a†a+ 1

)
. (3)

These three operators form a closed Lie algebra SU(1, 1),
which is defined by the commutation relations [17]

[K0,K±] = ±K±, [K−,K+] = 2K0 . (4)

The corresponding Casimir operator C is given by

C = K2
0 −

1
2

(K+K− +K−K+) = − 3
16
, (5)

which has the eigenvalue k (k − 1) for a unitary irreducible
representation (UIR). The parameter k is the so-called
Bargmann index. For the UIR known as the positive dis-
crete series D+(k), the states |m, k〉 diagonalize the com-
pact operator K0:

K0|m, k〉 = (m+ k) |m, k〉 , (6)

for k > 0 and m = 0, 1, 2, . . . [Note that in the single-mode
bosonic realization of the SU(1, 1) Lie algebra k can be
equal to 1/4 or 3/4. For k = 1/4 we obtain the even-
parity states of the bosonic mode, whereas k = 3/4 gives
the odd-parity states. The vacuum state for the bosonic
mode is apparently the state |0, 1/4〉.] The operators K+

and K− are Hermitian conjugates of each other and act as

raising and lowering operators respectively within D+(k),
i.e.

K+|m, k〉 =
√

(m+ 1) (m+ 2k) |m+ 1, k〉 ,
K−|m, k〉 =

√
m (m+ 2k − 1) |m− 1, k〉 . (7)

The corresponding SU(1, 1) generalized coherent states
|α; k〉 are defined as

|α; k〉 = exp (αK+ − α∗K−) |0, k〉 =

exp
[

1
2
(
αa†2 − α∗a2

)]
|0, k〉 . (8)

For k = 1/4, the coherent state |α; k = 1/4〉 is simply the
well-known single-mode squeezed vacuum state with the
squeezing parameter α.

In terms of the SU(1, 1) generators, we may re-write
the Hamiltonian in equation (2) as

H = H0 + V , (9)

where

H0 = ω0Sz + 2ω
(
K0 −

1
4

)
,

V = 2ε (K+S− +K−S+) . (10)

Recognizing that the operator of the total number of ex-
citations

N =
(
K0 −

1
4

)
+ Sz +

1
2
, (11)

whose eigenvalues are non-negative definite, commutes
with all operators conserving the total number of excita-
tions, e.g. [N , H0] = [N , V ] = 0, we can easily show that
the Hamiltonian H can be diagonalized by the dressing
unitary operator

T = exp {γ (K+S− −K−S+)} , (12)

where

β =

√(
N − 3

4

)(
N +

1
4

)
− C =

√
N
(
N − 1

2

)
,

tan (θ) = − 2εθ
γ (2ω − ω0)

= − 4εβ
2ω − ω0

. (13)

The transformed Hamiltonian H̃ ≡ T †HT takes the diag-
onal form

H̃ =
(

2ω +
∆

γ

)
Sz + 2ω

(
K0 −

1
4

)
, (14)

where ∆ =
√

(2εθ)2 + γ2 (2ω − ω0)2 . The eigenstates of

H̃ are simply given by |m, k, σ〉 ≡ |m, k〉|σ〉 for σ =↑ or ↓,
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k = 1/4 or 3/4, andm = 0, 1, 2, . . . , and the corresponding
eigenenergies can be straightforwardly found in the form

E
k=1/4
m,↓ = 2ω

(
m− 1

2

)
−1

2

√
16ε2

(
m− 1

2

)
m+ (2ω − ω0)2

,

E
k=3/4
m,↓ = 2ωm− 1

2

√
16ε2m

(
m+

1
2

)
+ (2ω − ω0)2

,

E
k=1/4
m,↑ = 2ω

(
m+

1
2

)
+

1
2

√
16ε2

(
m+

1
2

)
(m+ 1) + (2ω − ω0)2

,

E
k=3/4
m,↑ = 2ω (m+ 1)

+
1
2

√
16ε2 (m+1)

(
m+

3
2

)
+(2ω−ω0)2

. (15)

The spin-dependent part in equation (14) can be inter-
preted as the dressed atom Hamiltonian, and ω̃0 ≡ 2ω +
∆/γ represents the renormalized energy difference between
the two atomic levels in comparison with H0 in equa-
tion (10). The procedure developed so far is exact and
can be generalized to the multimode case without diffi-
culty [18].

Now we consider the effect of the counter-rotating term
ε(a†2S+ + a2S−) on the two-photon JC model. Incorpo-
rating the counter-rotating term into the two-photon JC
Hamiltonian, we obtain

H = ω0Sz + 2ω
(
K0 −

1
4

)
+ 4ε (K+ +K−)Sx . (16)

So far as we know, this Hamiltonian cannot be diagonal-
ized analytically; and thus one must resort to the numeri-
cal approach to calculate its eigenstates and eigenenergies.
To facilitate the numerical diagonalization, we introduce
here the unitary transformation

R = exp
{
−iπ

(
Sx −

1
2

)(
K0 −

1
4

)}
, (17)

which enables us to decouple the spin degree of freedom
from the boson mode. The unitary operator R transforms
the annihilation operator K− and the spin operator Sz as
follows:

R†K−R = 2K−Sx ,

R†SzR = cos
[
π

(
K0 −

1
4

)]
Sz + sin

[
π

(
K0 −

1
4

)]
Sy .

(18)

Using these relations, we apply the unitary transformation
to the Hamiltonian H and obtain

H̃ ≡ R†HR = ω0 cos
[
π

(
K0 −

1
4

)]
Sz

+ω0 sin
[
π

(
K0 −

1
4

)]
Sy

+2ω
(
K0 −

1
4

)
+ 2ε (K+ +K−) . (19)

It is not difficult to see that within the subspace of the
Bargmann index k = 1/4 the transformed Hamiltonian is
reduced to

H̃1/4 = ω0 cos
[
π

(
K0 −

1
4

)]
Sz

+2ω
(
K0 −

1
4

)
+ 2ε (K+ +K−) , (20)

whereas for k = 3/4 we have

H̃3/4 = ω0 sin
[
π

(
K0 −

1
4

)]
Sy

+2ω
(
K0 −

1
4

)
+ 2ε (K+ +K−) . (21)

Obviously, in both cases the spin degree of freedom and
the boson mode are decoupled. Eigenstates of each of these
two sectors are simply given by |M〉|φl〉, where |M〉 is an
eigenstate of the spin operator and |φl〉 the l-th eigenstate
of the one-body bosonic Hamiltonian h:

h = Mω0 (−1)K0−k + 2ω
(
K0 −

1
4

)
+ 2ε (K+ +K−) ,

(22)

for M = ±1/2. As a result, the Hilbert space of H̃ can
be divided into four independent subspaces, each of which
is characterized by the Bargmann index k and the corre-
sponding spin quantum number M . With respect to the
basis states |m, k〉 in each subspace, the matrix elements
of h are given by

〈n, k|h|m, k〉 =
[
Mω0 (−1)m + 2ω

(
m+ k − 1

4

)]
δn,m

+2ε
[√

(m+ 1)(m+ 2k)δn,m+1

+
√
m(m+ 2k − 1)δn,m−1

]
. (23)

This matrix can be easily diagonalized by standard nu-
merical methods in each subspace to yield the eigenenergy
spectrum of the system.

3 Numerical results and discussion

Before we go into the details of the numerical results, let
us first examine some of the basic properties of the system.



122 The European Physical Journal D

First of all, there exists a conserved quantity Π associated
with the Hamiltonian H:

Π = exp
{
iπ

[(
K0 −

1
4

)
+ Sz +

1
2

]}
=

−2Sz exp
[
iπ

(
K0 −

1
4

)]
, (24)

i.e. [H, Π] = 0. Applying the unitary transformation R to
Π, we obtain

Π̃ ≡ R†ΠR = −2
{

cos
[
π

(
K0 −

1
4

)]
Sz

+ sin
[
π

(
K0 −

1
4

)]
Sy

}
× exp

[
iπ

(
K0 −

1
4

)]
.(25)

Within the subspace of the Bargmann index k = 1/4 the
transformed operator Π̃ is reduced to

Π̃1/4 = −2Sz , (26)

whereas for k = 3/4 we have

Π̃3/4 = −i2Sy . (27)

Hence, the fact that the eigenstates of the transformed
Hamiltonian in the two Bargmann sectors are eigenstates
of the spin operators originates from the basic compati-
bility of H and Π .

Next, for ω0 = 0 it is not difficult to show that the one-
body Hamiltonian h in equation (22) can be diagonalized
by the unitary SU(1, 1) displacement transformation S =
exp

[
− (1/2) tanh−1 (2ε/ω) · (K+ −K−)

]
:

h̃ = S†hS = 2ω̃K0 −
ω

2
, (28)

where ω̃ = ω

√
1− (2ε/ω)2 . One should notice that the

function tanh−1 (2ε/ω) is well defined only if 2ε/ω < 1 ; in
other words, for 2ε/ω > 1, there does not exist any unitary
transformation S which can diagonalize the Hamiltonian h
(with ω0 = 0). This can be easily understood as follows. In
terms of the bosonic creation and annihilation operators,
the Hamiltonian h (with ω0 = 0) can be expressed as

h = ωa†a+ ε
(
a†2 + a2

)
. (29)

Defining the “position” and “momentum” operators of the
boson mode as

x =
1√
2ω

(
a+ a†

)
, p =

1
i

√
ω

2
(
a− a†

)
, (30)

respectively, we may re-write h in equation (29) as

h =
p2

2m̃
+

1
2
m̃ω̃2x2 − ω

2
, (31)

where m̃ = [1− (2ε/ω)]−1. Clearly, for 2ε/ω < 1, the
Hamiltonian h corresponds to a quantum harmonic oscil-
lator of mass m̃ and frequency ω̃, and thus can be diago-
nalized using the basis states of n̂ ≡ a†a. On the contrary,
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Fig. 1. Energy spectrum of the two-photon JC model without
RWA for different interaction strength ε. Only the lowest five
eigenstates in each subspace are shown. (a) ω = 1, ω0 = 2; (b)
ω = 1, ω0 = 1; (c) ω = 1, ω0 = 4.

for 2ε/ω > 1, the Hamiltonian h represents an inverted os-
cillator in the momentum space, and thus cannot be diag-
onalized using the basis states of n̂ because its eigenstates
are not normalizable. In other words, the basis states of
n̂ are not analytic vectors of h, and the operator h is not
self-adjoint in the space of Gaussian measure [19,20]. The
above analysis still holds for ω0 6= 0 because the first term
in equation (22) is a bounded operator and the basis states
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Fig. 2. Energy spectrum of the two-photon JC model with
RWA for different interaction strength ε. Only the lowest five
eigenstates in each subspace are shown. (a) ω = 1, ω0 = 2; (b)
ω = 1, ω0 = 1; (c) ω = 1, ω0 = 4.

of n̂ are apparently analytic vectors of this bounded oper-
ator. Accordingly, the two-photon JC model without the
RWA is well defined only if 2ε/ω < 1, and this is in sharp
contrast to the RWA result.

In Figure 1 we show the exact eigenenergy spectrum
of the system without the RWA as a function of the cou-
pling parameter ε for different values of ω0. For conve-
nience, we have set the energy unit such that ω = 1. We
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Fig. 3. Overlap (square of the inner product) between a RWA
eigenstate and its non-RWA counterpart. (a) ω = 1, ω0 = 2;
(b) ω = 1, ω0 = 1; (c) ω = 1, ω0 = 4.

also plot the RWA results in Figure 2 for comparison. It
is clear that both the RWA and the non-RWA spectra
exhibit complicated patterns of energy-level crossing as
the coupling parameter ε varies, and that the eigenenergy
spectrum of the system can be approximated by the RWA
spectrum only in the range of a sufficiently small cou-
pling parameter. The range of validity of the RWA can be
determined in a more quantitative manner by simply ex-
amining the overlap of the exact eigenstate and its RWA
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Fig. 4. The time evolution of Q1(t) within the RWA and at
resonance.

counterpart as shown in Figure 3. Of particular interest
is the result displayed in Figure 3(a). It illustrates that
for a given value of the coupling parameter ε, an exact
eigenstate in the non-RWA spectrum and its RWA coun-
terpart can belong to completely different subspaces so
that the two states do not overlap. Fundamentally this
phenomenon is associated with the disparity between the
pattern of the energy-level crossing in the non-RWA spec-
trum and that in the RWA spectrum. In fact, such or-
thogonality of corresponding eigenstates is found to be
prevalent among the highly excited states. Thus, for dy-
namical processes which involve the collective evolution of
the eigenstates, the description based upon the RWA may
deviate markedly from the actual behaviour of the system,
especially when the coupling parameter is not small. As
the coupling parameter increases, the energy level spac-
ing decreases monotonically. In particular, as 2ε/ω → 1−,
the higher energy levels dramatically collapse towards the
lower ones. This can be attributed to the fact that the
eigenenergy spectrum of h̃ in equation (28) approaches a
continuum as ω̃ → 0+, and that the spin-dependent term
in equation (22) can help separate some of the lower en-
ergy levels only. The splitting of the lower energy levels
is observed to be more effective for large ω0. It is also
interesting to point out that in the case of ω0 = 1 the
first and second excited states of the system without the
RWA are degenerate for all the allowed values of ε, and
that the RWA removes this accidental degeneracy. Fur-
thermore, beyond the critical value of ε, i.e. ε = 1/2, it
is observed that the numerical diagonalization using the
basis states of n̂ does not give any converged result at all.
This is consistent with our analysis above, and thus con-
firms that the two-photon JC model without the RWA is
well defined only if 2ε/ω < 1. Accordingly, the two-photon
JC model without the RWA is qualitatively different from
the one-photon counterpart which is valid for all values of
the coupling parameter [14].

Finally, we shall apply the above results to study the
effects of the counter-rotating term on the dynamics of

the system, in particular the time evolution of the field
squeezing. We define the two amplitude operators a1 and
a2 of the quadrature of the field as follows:

a1 =
1
2
[
a exp (iωt) + a† exp (−iωt)

]
,

a2 =
1
2i
[
a exp (iωt)− a† exp (−iωt)

]
, (32)

with [a1, a2] = i/2. Field squeezing occurs whenever

Qk(t) = 4
[
〈(∆ak)2〉t −

1
4

]
< 0, k = 1, 2 , (33)

where 〈(∆ak)2〉t = 〈a2
k〉t − 〈ak〉2t . The initial state |ψ(0)〉

of the system is taken to be the product state |ψfield〉 ⊗
|ψatom〉, where |ψfield〉 is just a coherent state |α〉 of the
field and |ψatom〉 is a symmetric linear combination of the
spin states | ± 1/2〉 of Sz. In Figure 4 we show the time
evolution of the parameter Q1(t) for α =

√
50 within the

RWA and at resonance. No field squeezing is observed. In
Figure 5 the non-RWA time evolution of Q1(t) is plotted
for a small value of coupling parameter ε, i.e. 0.005, at
resonance. As expected, in the presence of the counter-
rotating term, we observe fast oscillations in the evolu-
tion of Q1(t). Furthermore, it is found that the counter-
rotating term can cause significant improvement on the
field squeezing. The enhancement not only increases with
α, but it also grows rapidly with time. So the two-photon
JC model without the RWA may serve as a good can-
didate for preparing quantum states with high degree of
field squeezing. In order to obtain a deeper understand-
ing of the effects of the counter-rotating term on the field
squeezing, we plot the parameter Q1(t) for different values
of ε in Figure 6 as well. We find that the increase in the
coupling strength can enhance the field squeezing. How-
ever, there exists a critical value of the coupling strength
εc, beyond which the field squeezing starts diminishing.
These results are completely different from those with the
RWA.

In conclusion, we have investigated the eigenenergy
spectrum of the two-photon JC model with and without
the RWA. Our analysis has indicated that the counter-
rotating term dramatically changes the nature of the RWA
energy spectrum and that the non-RWA spectrum can be
approximated by the RWA spectrum only in the range
of a sufficiently small coupling constant. Unlike the one-
photon counterpart, the two-photon JC model without
the RWA is found to be well defined only if 2ε/ω < 1.
As a result, the dynamics of the two-photon JC model
without the RWA is significantly different from its RWA
counterpart. For instance, the counter-rotating term can
dramatically enhance the field squeezing effect. Since
quantum optics experiments are nowadays being per-
formed with ever-increasing field intensities, the en-
hanced field squeezing effect may still be observable ex-
perimentally even though the typical value of the fac-
tor ε/ω accessible in micromaser experiments is approx-
imately 10−7 ∼ 10−8 [20,21]. Furthermore, another sys-
tem, namely a trapped and laser-irradiated ion, has been
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Fig. 5. The time evolution of Q1(t) for ε = 0.005 without the
RWA and at resonance.
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Fig. 6. The time evolution of Q1(t) for different values of the
coupling parameter ε without the RWA and at resonance.

shown to exhibit a two-quantum JC dynamics recently [22,
23]. Here the quantized harmonic center-of-mass motion of
the trapped ion plays the role of the boson mode, which
is coupled via the laser to the internal (electronic) de-
grees of freedom. The laser-induced coupling constant is
intrinsically much larger than that in quantum optics —
typically ε/ω is about 10−3 ∼ 10−4, and can be easily con-
trolled by varying the intensity of the applied laser [23].
Accordingly, the effect of the counter-rotating term will be
more prominent in such system. Besides, we would expect
that the quantum dynamics of the two-photon JC model
without the RWA is qualitatively different from that of
the usual one-photon case, and we are in the process of
pursuing this.

As a final remark, we would like to point out that in
the context of quantum optics the RWA Hamiltonian in
equation (10) can be regarded as an effective Hamilto-
nian for the RWA model of a three-level atom interacting
with a single-field mode via two single-photon transitions,

in which the Stark shift term is being neglected [24]. For
atom-field interaction times which are comparable with
that in the two-photon micromaser experiment, this effec-
tive Hamiltonian is able to give results similar to those
of the three-level system. However, the non-RWA Hamil-
tonian in equation (16) may not be able to simulate the
non-RWA three-level system, in which the single-photon
counter-rotating terms are included, with the same de-
gree of accuracy. This is because terms like a†2Sz, a2Sz,
a†aS+ and a†aS− are missing in the non-RWA Hamilto-
nian in equation (16) [25]. Nevertheless, in the context of
a trapped and laser-irradiated ion the two-quantum JC
model with and without the RWA is of immediate rele-
vance to the dyanmics of the trapped ion [22,23].
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